2017年10月12日 星期四

薄型混凝土薄殼工法|BRG ETH Zurich 

原文出處:ETH NEWS
原文新聞稿:Prof. Philippe Block
官方頁面:Block Research Group

Credit:Block Research Group

© Block Research Group, ETH Zurich / Michael Lyrenmann

蘇黎世聯邦理工學院的研究人員,利用創新的數位設計和製作工法,建立了一個超薄的弧形混凝土屋頂的原型。經過測試的新型系統將在明年實際的工程中首度使用。
Researchers from ETH Zurich have built a prototype of an ultra-thin, curved concrete roof using innovative digital design and fabrication methods. The tested novel formwork system will be used in an actual construction project for the first time next year.

蘇黎世聯邦理工學院的研究人員,設計和建造了一個使用創新設計和製造方法的超薄混凝土屋面原型。該薄殼是一個屋頂單元的局部,將會於明年建構成一個名為 HiLO 的建築單元,隸屬於 NEST 大樓的一部分(the living lab building of Empa and Eawag in Dübendorf)。完工後下方的閣樓空間將成為 Empa 的客座教職員,未來生活與工作的空間。這群研究人員由 Architecture and Structures 的 Philippe Block 教授,以及 Architecture and Building Systems 的 Arno Schlüter 教授所領導,希望將嶄新的輕量化建築結構用於實際的測試,並將它與智慧和適應性建築系統結合起來。
A prototype for an ultra-thin, sinuous concrete roof using innovative design and fabrication methods has been designed and built by researchers from the ETH Zürich. The shell is part of a roof-top apartment unit called HiLo that is planned to be built next year on the NEST, the living lab building of Empa and Eawag in Dübendorf. The penthouse will provide living and work space for guest faculty of Empa. Researchers led by Philippe Block, Professor of Architecture and Structures, and Arno Schlüter, Professor of Architecture and Building Systems, want to put the new lightweight construction to the test and combine it with intelligent and adaptive building systems.

© Block Research Group, ETH Zurich
這個自承(self-supporting)雙曲(doubly curved)殼屋頂由多層構造物所組成:加熱線圈、冷卻線圈和絕緣材料安裝在內混凝土層;往外一層的混凝土夾層結構用於外部,除了包覆屋頂,太陽能光電薄膜也安裝在這上頭。由於這項技術所使用的工法,以及搭配上具備調整能耐的太陽能帷幕,這樣的住宅單位可望產生(較建構時所消耗的)更多的能源。
The self-supporting, doubly curved shell roof has multiple layers: the heating and cooling coils and the insulation are installed over the inner concrete layer. A second, exterior layer of the concrete sandwich structure encloses the roof, onto which thin-film photovoltaic cells are installed. Eventually, thanks to the technology and an adaptive solar façade, the residential unit is expected to generate more energy than it consumes.
© Block Research Group, ETH Zurich / Michael Lyrenmann

 嘗試與實際尺寸測試 
屋頂的建築技術是由 Prof. Philippe Block 和高級研究員 Dr. Tom Van Mele 領導的 BRG(Block Research Group),與建築公司 supermanoeuvre 一同進行,一個真實尺度的原型測試。為了因應試做空間未來的使用需求,該原型目前已經拆除,這個原型的高度達到 7.5 米高,表面面積為 160 m²(投影面積為 120 m²)。混凝土的平均厚度為 5 cm,從屋頂邊緣最薄處的 3 cm 漸變到支撐部分的 12 cm 厚表面。
 Tried and tested to scale
The building technique for the roof was developed by the Block Research Group, led by Prof. Block and senior researcher Dr. Tom Van Mele, together with the architecture office supermanoeuvre, and tested out on a full-scale prototype. The prototype, which has already been dismantled to make space for future experiments, was 7.5 m high with a surface area of 160 m² (covering an area in plan of 120 m²). The thickness of the concrete has an average thickness of 5 cm varying between 3 cm along the edges of the roof to 12 cm at the support surfaces.

© Block Research Group, ETH Zurich / Michael Lyrenmann

為了能實現這樣的複雜幾何造型,相較於過去所使用的訂製木材,或發泡材CNC研磨的方式(=不可重複使用),研究人員在這次的成形系統使用了鋼絲網繩,這些結構物延伸連接到一個可重覆使用的鷹架結構。這樣的網繩系統連結支援一面聚合物織物,共同作為混凝土的模板。這不僅使研究人員節省了大量的建構材料,同時提供了一個解決方案得以有效地實現全新的設計類型。這種「可調整的成形系統」的另一個優點,在屋頂的澆築過程中,下面的區域可以保持通暢,內部建築的工作可以同時進行(節省工時)。
Instead of formwork using non-reusable custom-fabricated timber or milled foam, which would be needed to realise such sophisticated form, the researchers used a net of steel cables stretched into a reusable scaffolding structure. This cable net supported a polymer textile that together functioned as the formwork for the concrete. This not only enabled the researchers to save a great deal on material for construction, they were also able to provide a solution to efficiently realise completely new kinds of design. Another advantage of the flexible formwork solution is that during the concreting of the roof, the area underneath remains unobstructed and thus interior building work can take place at the same time.

© Block Research Group, ETH Zurich / Naida Iljazovic

© Block Research Group, ETH Zurich / Naida Iljazovic 

© Block Research Group, ETH Zurich / Naida Iljazovic

© Block Research Group, ETH Zurich / Naida Iljazovic

© Block Research Group, ETH Zurich / Naida Iljazovic

© Block Research Group, ETH Zurich / Naida Iljazovic

© Block Research Group, ETH Zurich / Naida Iljazovic

© Block Research Group, ETH Zurich / Naida Iljazovic

© Block Research Group, ETH Zurich / Naida Iljazovic

© Block Research Group, ETH Zurich / Naida Iljazovic

© Block Research Group, ETH Zurich / Michael Lyrenmann

 控制形狀的演算法
該鋼絲網繩是被設計來承載濕混凝土的重量後,仍維持理想的造型;這樣的需求多虧 BRG 以及他們的合作單位 NCCR Digital Fabrication 所開發的一套演算法。該演算法確保了在單個鋼索和屋頂之間分佈正確的力,並精確地設定了所期望的形狀。金屬纜繩網僅重 500kg,紡織品重量為 300kg;總重量僅 800kg 的結構支撐起重達 20 噸的濕混凝土。
 Algorithms for controlling the shape
The cable net is designed to take on the desired shape under the weight of the wet concrete, thanks to a calculation method developed by the Block Researcher Group and their collaborators in the Swiss National Centre of Competence (NCCR) in Digital Fabrication. The algorithms ensure that the forces are distributed correctly between the individual steel cables and the roof assumes the intended shape precisely. The cable net weighs just 500 kg and the textile 300 kg; thus, with a total of only 800 kg of material the 20 tons of wet concrete are supported.
© Block Research Group, ETH Zurich

© Block Research Group, ETH Zurich / Michael Lyrenmann

© Block Research Group, ETH Zurich / Naida Iljazovic

© Block Research Group, ETH Zurich / Naida Iljazovic

© Block Research Group, ETH Zurich / Michael Lyrenmann

© Block Research Group, ETH Zurich / Michael Lyrenmann

© Block Research Group, ETH Zurich / Naida Iljazovic

© Block Research Group, ETH Zurich / Michael Lyrenmann

如果沒有最先進的計算和製造技術,屋頂的建造將會難以想像的,但這個專案也很仰賴幾個工匠與專業技術。從 Bürgin Creations 和 Marti Group 的專家們開發了專為這個系統使用的噴灑混凝土技術,確保織品可以在任何時候承受住壓力。Holcim Schweiz 的科學家們調配了正確的混凝土配方,使其能有足夠的流動性被噴灑和振動,但又保有足夠的黏稠度,以不至於溢流出織物模具(甚至在垂直點的部分)。
The construction of the roof would be inconceivable without state-of-the-art computation and fabrication techniques, but the project also heavily relied on the expertise and experience of several craftspeople. Experts from Bürgin Creations and Marti sprayed the concrete using a method developed specifically for this purpose, ensuring that the textile could withstand the pressure at all times. Together with Holcim Schweiz, the scientists determined the correct concrete mix, which had to be fluid enough to be sprayed and vibrated yet viscous enough to not flow off the fabric shuttering, even in the vertical spots.
© Block Research Group, ETH Zurich / Naida Iljazovic

© Block Research Group, ETH Zurich / Naida Iljazovic

© Block Research Group, ETH Zurich / Naida Iljazovic

© Block Research Group, ETH Zurich / Michael Lyrenmann

© Block Research Group, ETH Zurich / Naida Iljazovic

© Block Research Group, ETH Zurich / Naida Iljazovic

 系統驗證 
Block 的團隊進駐在蘇黎世聯邦理工學院(ETH Zurich)的 Robotic Fabrication Lab 裡,費時六個月的時間建立了這個原型。它代表了 NEST 大樓中 HiLo 專案的一個重要里程碑:"我們已經證明,它有可能建立一個令人興奮的薄殼混凝土結構,使用輕質而靈活的模具,從而證明,複雜的混凝土結構的成形,不一定得浪費大量的建築材料。由於我們開發了系統,並與我們的業界夥伴逐步建立了這個原型,我們現在知道我們的方法將可以在 NEST 建築工地實踐。"Block 教授這麼說。
 Proof that it works
Block's team built the prototype over the course of six months in ETH Zurich's Robotic Fabrication Lab. It represents a major milestone for the NEST HiLo project: “We've shown that it's possible to build an exciting thin concrete shell structure using a lightweight, flexible formwork, thus demonstrating that complex concrete structures can be formed without wasting large amounts of material for their construction. Because we developed the system and built the prototype step by step with our partners from industry, we now know that our approach will work at the NEST construction site,” says Block.
© Block Research Group, ETH Zurich / Michael Lyrenmann

這整個過程要走到這一階段,花了將近四年時間。從專案開始到完成的原型,部分原因是因為 Block 想讓幾個合作夥伴參與開發原型。明年,他計畫在八到十周內再一次在 NEST 建造屋頂。屋頂結構的各自單元將會根據需要,被經常性的重複使用。高絲網繩可以拆卸成幾個部分,可以快速重新組裝和吊掛。
The process to get to this point took almost four years, from the start of the project to the finished prototype, partly because Block wanted to involve several industry partners in development of the prototype. Next year, he plans to build the roof once again at the NEST building in eight to ten weeks. The individual components of the roof structure can be reused as often as needed. The cable net can be dismantled into a few parts that can be quickly reassembled and rehung.

作品紀錄片(完整版)from BRG

 (後記)為鄰房生產能源 
HiLo 的發展之所以會令人印象深刻,不僅是因為其獨特的屋頂設計,也由於其創新的輕量化地板系統和建築技術,目標是達到能量的供需平衡。這些能量能在 NEST 大樓的各自單位之間被交換;HiLo 單元期許產生比它消耗更多的能量。作為補償, 它可以利用其他建築單位的廢熱,以及在 NEST 區域網路中的建築物。這也是為何 Arno Schlüter 教授參與計畫的原因:這位建築與建築系統的教授,正在開發一個新的建築系統,透過溫度感應器的使用,偵測出建築物低溫的區塊,使用這些熱能以營造宜人的室內環境。為此,他在結構體(包括屋頂)使用了這些熱能單件。
 Energy production for the neighbours 
The HiLo unit is impressive not only because of its unusual roof design, but also due to its innovative lightweight floor system and a building technology with a positive energy balance. Energy is exchanged between the individual units in the NEST building. The HiLo unit is required to produce more energy than it consumes. As compensation, it can use waste heat from the other building units, as well from buildings in NEST's district network. This is where ETH professor Arno Schlüter comes in: the professor of architecture and building systems is developing a building system with sensors that uses heat at low temperatures to create a pleasant interior climate. For this purpose, he uses components of the structure, including the roof, that are thermally activated.



<上一篇> 
環保的降溫裝置/印度 Ant Studio

Popular Posts